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THE RELATIVE CLASS NUMBERS OF IMAGINARY CYCLIC FIELDS 
OF DEGREES 4, 6, 8, AND 10 

KURT GIRSTMAIR 

ABSTRACT. We express the relative class number of an imaginary abelian num- 
ber field K of prime power conductor as a sort of Maillet determinant. Thereby 
we obtain explicit relative class number formulas for fields K of conductor p, 
p > 3 prime, and degree 2d = [K: Q] < 10, in terms of sums of 2d-power 
residues. In particular, tables are given for p < 10000. 

INTRODUCTION 

Let p, m be in N, p prime. In a number of papers the relative class num- 
ber of the pmth cyclotomic field has been expressed as a rational determinant 
(Maillet's determinant; cf. [1, 8, 10, 11], see also [12, 3]). Moreover, an explicit 
relative class number formula in terms of quartic power residues modulo p has 
been given for imaginary cyclic quartic fields of conductor p [9, 7]. The aim 
of the present article is to study a generalization of Maillet's determinant that 
yields relative class number formulas for arbitrary imaginary abelian fields K 
of conductor pm (Theorem 1). By specializing these formulas to fields K of 
degree [K: Q] = 2d and conductor p, we obtain explicit relative class num- 
ber formulas in the cases d = 1, 2, 3, 4, 5 (the formula for d = 1 is well 
known, of course). Our formulas are used to compute relative class number 
tables for d = 3, 4, 5 and p < 10000 (Tables 1-3 in the Supplement section; 
the respective table for d = 2 can be found in [6]). 

1. GENERALIZED MAILLET DETERMINANTS 

Let K be an imaginary abelian number field of conductor n. In particular, 
K is contained in the nth cyclotomic field Q(4n), 'n = e2 '/n. By Gn we 
denote the Galois group 

Gn = Gal(Q(Cn)/Q). 

Let (Z/nZ) X be the prime residue group mod n. There is a canonical isomor- 
phism 

(Z/nZ)X -+Gn 

which maps the residue class k, k E Zi, onto ak , ak being defined by Uk(cn) = 

n . For this reason we shall frequently identify k with Uk, and thus the group 

(Z/nZ)x with Gn. 
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Let H C Gn be the Galois group 

H = Gal(Q(Cn)/K) = {c E Gn; YIK = id}. 

Since K is imaginary, H does not contain complex conjugation -1 = -1. 
Therefore, K+ = K n R is a proper subfield of K, and H+ = ({-1 } U H) is the 
Galois group H+ = Gal(Q(Cn)/K+). The group index [H+: H] equals 2. We 
write d = [K+: Q], which means [K: Q] = 2d. Now let Xn be the character 
group of Gn, X C Xn the character group of K (i.e., the character group of 
Gn/H), X+ the character group of K+, and X- = X\X+ . We fix an arbitrary 
character _r in X- . This is the same as saying y/(k) = 1 for each k E H, 
and y/(-1)=--. 

For a given number k E Z, let [k] = [k] be defined by 

k _ [k] mod n and [k] E {O.,1, ..., n 1}. 

If (k, n) = 1, we put 
n 

Ek = y/ (k) E (2[ki] -n). 
j=1 
]EH 

Proposition 1. With the above notations, 
n 

Ek= Z t(7Mi] 
j=1 

jEkH+ 

In particular, Ek depends on the residue class of k modulo H+ only. 
Proof. Since yrtj) = 1 for all elements i E H, one obtains 

Ek = Z yi(kj)(2[kj] - n). 
jEH 

Now Ek can be rewritten as 

Ek = 2 Z(yV(kj)(2[kj] - n) + yl(-kj)(2[-kj] - n)) 
jEH 

= 2 Z Mt'(j)(2[j] -n) 
jETH+ 

= Z y'(i)[i] - jy~k) Z ''(i)* 
jEkH+ jEH+ 

However, the last sum is 0, since yr(j) = 1 for E E H, yt(j) = -1 for 
j E H+\H, and IHI = IH+\HI = d. o 

In view of Proposition 1 we may write Ek = Er, where r is the residue class 
of k modulo H+. 

Let 3 C Z be a system of representatives of Gn/H+. In particular, JR = 

d. Suppose, moreover, that M is ordered in some way. We put 

D = det(Ekj)k,IjE = det(Ers)r,sEG,/H+ , 
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and 
D = det(Ers-1)r,sEGn/H+. 

Finally, let a = i{k E R; T2 E H+}I. We get 

Proposition 2. In the above situation, 

D = (1)(d-,6)/2 .D*. 

Proof. Consider the permutation 

p: G,/H -+ GIH+ 

of G,/H+, defined by p(r) = r- I. Clearly, D = sign(p) *D* . But sign(p) = 
(-1)e, with e = I{r E G,/H+; r 7 r-1}I/2 = (d - I{r E Gn/H+; r2 = 1}1)/2 = 
(d - )/22. a 

For a prime divisor p of n, let ep (resp. ep+) be the ramification index of 
p in K (resp. K+). Similarly, gp (resp. gp+) denotes the number of prime 
divisors of p in K (resp. K+). 

Theorem 1. Let the above notations hold. Then D* = 0 if there is a p, pin, 
with gp = 2gp+. Otherwise, 

D* = (-2n)d2Kh /(Q * w), 

with 

K=E{gp+;plng=gp+ ep=ep+ 
h- = relative class number of K, 
Q = unit index of K, 
w = number of roots of unity in K (for notation, cf. [5]). 

Proof. By its definition, D* is a group determinant belonging to the abelian 
group Gn/H+, which means (cf. [5, p. 23]) 

D* = 11 ( : X (r) .Er) 
,XEX+ rE Gn/H+ 

It is easy to see that 
n 

Z X(r)Er= E Xy/(k)k, 
rEGn/H+ k=1 

(k, n)=1 

whence 
n 

D* = E|, %k k. 

( k, n)-l I 

Now let fx denote the conductor of X, and Xf the primitive character of 
(Z/fxZ) X that belongs to x. A reduction formula of Hasse (cf. [5, p. 18]) says 

n 

Z x(k)*k=nf*l(l-Xf(p))*Bx, 
k=1 pIn (k ,n)=lI 
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where B. is the generalized Bernoulli number 

Ax 
B =EZxf (k) * k/fx. 

k=i 

The product HxEx- (1 - Xf (p)) can be evaluated in a well-known way (cf., e.g., 
[2]). We obtain 

0 if gp 2gp+, 

JJ -11(p)) I if ep =2ep+, 
XEX- 2 if gp =gp+, ep = ep+. 

Finally, 
]7 Bx= (-2)d * h /(Q * w) 

XEX- 

(cf. [5, p. 12]). On putting these results together, one gets the theorem. El 

Let us now consider the special case n = pm, p an odd prime. Then K is 
a cyclic extension of Q with [K: Q] = 2d. Since ep = 2ep+, the number K is 

0. According to [5, p. 68], the unit index Q equals 1. The number w is given 
by the following 

Proposition 3. With the above conventions, 

f2* pm if K= (4n), 
W i 2 otherwise. 

Proof. Assume that K contains a root of unity different from ?1 . Then K 
contains a root of unity of p-power order. Therefore, Cp E K. But then 
[Q(Cn): K] = pk for some k O < k < m - 1 . Since Q(Cn) is cyclic over Q, 
there is only one subfield K of Q(Cn) with this property, viz., K = Q(4pm-k). 

However, n = pm is the conductor of K; hence k = 0. E 

On collecting the above observations, we obtain the 

Corollary to Theorem 1. Let p > 3 be prime, n = pm, m > 1, and K be an 
imaginary abelian field of conductor n and degree 2d = [K: Q]. Then 

=I (-1)d(2n)d- * h if K=Q(4n) , 

(-n)d* 2d-1 * h- otherwise. 

2. THE CASE OF A PRIME CONDUCTOR 

Let, in particular, n = p > 3 be prime, which implies that 2d I (p - 1) . Then 

H=G 
2d 

-2d 

-{k G}. 
Since -1 is not in H, we get (-l)(P-1)/(2d) _ -1 mod p, and p _1 + 
2d mod 4d. If, conversely, p _ 1 + 2d mod 4d, there is a uniquely determined 
subfield K of Q(Cp) with [K: Q] = 2d, and K is imaginary. We now choose 
a number g E Z\pZ such that R = {1,gg2, ..., gd-1} is a system of 
representatives for Gp/H+ . This is the same as saying that 

()k(p-l)/d i 1 mod p 
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for each k E {1, . d. ,d- 1}. We define 

p-l 

F( = (2[gkj2d]P), k E Z. 
j=1 

Then V/(gk) Fk = 2d * Egk. By Proposition 2 and the corollary of Theorem 1, 

(***) det((gj+k)Fjkj k= d-1 = (2d)d D = c*h 

with 
(_l)(3d-1)/2 22d-1 .pd-1 .d d if d = (p- 1)/2, 

p _ 3 mod 4, 
(-l)(3d-2)/2 22d-1 *pd-1 Pdd if d = (p- 1)/2, 

p =1 mod 4, 
c = 

(-1)(3d-l)/2 
. 

22d-1 
. 

(pd)d if d < (p- 1)/2, 

d odd, 
_1)(3d-2)/2 . 22d-1 . (pd)d if d < (p- 1)/2, 

d even. 

Examples. For small numbers d it is easy to write down the determinant in 
(***) term by term. We do so for d = 1, ..., 5. 

1. Let d = 1, i.e., p -3 mod 4, and p > 3. In this case (***) means 

p-l 

Fo= (2[j2] - p) = -2p * h-. 
j=1 

This is well known (cf. [4, p. 387]). 
2. Let d = 2, i.e., p- 5 mod 8, and p > 5. Because of (2) = 2(P-1)/2 

-1 mod p, the number g = 2 has property (*), and the character qi can be 
defined by 

y,(2) = i, y,(k) =1, 

for all k E H = Gp4. With Fk defined as in (**), formula (***) reads as 

det( F iF ) F02 + F12 32 * p2 h-. 

3. Let d = 3, i.e., p 7 mod 12, and p > 7. Choose a number g' E 

Z\pZ such that g'(P-l)13 1 mod p. Then put g = g'2. Moreover, since 
p -3 mod 4, the Legendre symbol q = (-) is an odd character with H = G- 
contained in Ker q1 . However, q,(gk) = 1, k = 0, 1, 2, and, with Fk as in 
(**), formula (* **) takes the form 

3 * Fo F1 * F2- (Fo3 + F13 + F23) = 864 * p3 * h-. 

4. Let d=4,i.e., p-9mod 16,and p>9. Choose gE Z\pZ suchthat 
(p) =(p-1)/2 -1 modp . Then g has property (*), and q1 can be defined 
by (g) = C8 =e I4, g(k) = 1 for all kE H = Gp . With Ek as in (**),our 
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formula (* * *) reads as 

- (Fo4 + Fl4 + F24 + F34)- 2(Fo2F22 + F12F32) 

- 4(F02F1F3- F12FoF2- F22F1F3 + F32FoF2) = -32768 *p4 * h-. 

5. Finally, let d = 5, i.e., p- 11 mod 20, and put p > 11. Choose a 
number g' E Z\pZ such that g'(p-l)/1 1 mod p. Then g = g'2 has property 
(*). Again, the Legendre symbol / = (-) is an odd character of Gp, with 
H C Ker V and Vt(g) = 1. We obtain 

+ F+5 + + F3 +F 

-5{F (F1F4 + F2F3) + F 3(FoF2 + F3F4) + F (FoF4 + FiF3) 

+ F 3(FoF1 + F2F4) + F2(F + F + F1F2)} 

+ 5{Fo(F2F42 + F22F32) + F1 (F2F22 + F32F42) 

+ F2(FjF4 + F1F3) + F3(FJF? + F#F4) + F4(FoF3 + FF#)} 

- 5 FoF1F2F3F4 = -1600000 p5 *h-. 

Remarks. 1. Of course it is possible to give analogous relative class number 
formulas for d > 6, too. In the case d = 6, however, the determinant 
det(Vg(g)i+kFj+k) consists of 68 monomials in F0, ..., F5 . Therefore, the 
formula is too complicated to be written in full. 

2. Let d = 2 * d', d' odd. Then X contains a character qi of order 2q+. 

Obviously, V/ (-1) = -1 and y/(k) = 1 for all k E H = GP . Thus, V/ has 
the required properties, and we may say that there is always an appropriate 
character V/ of Gp of 2-power order. 

3. TABLES 

We have used the formulas of Examples 1, ..., 5 to compute the relative 
class numbers h7- of imaginary subfields K C Q(4p) with [K: Q] = 2d, d E 
{2, 3, 4, 5} and 2d + 1 < p < 500000. In the Supplement we display the 
result for d = 3, 4, 5 and p < 10000 (Tables 1, 2, 3). The respective table 
for [K: Q] = 4 can be found in [6]. 
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