THE RELATIVE CLASS NUMBERS OF IMAGINARY CYCLIC FIELDS OF DEGREES 4, 6, 8, AND 10

KURT GIRSTMAIR

Abstract

We express the relative class number of an imaginary abelian number field K of prime power conductor as a sort of Maillet determinant. Thereby we obtain explicit relative class number formulas for fields K of conductor p, $p \geq 3$ prime, and degree $2 d=[K: \mathbb{Q}] \leq 10$, in terms of sums of $2 d$-power residues. In particular, tables are given for $p \leq 10000$.

Introduction

Let p, m be in \mathbb{N}, p prime. In a number of papers the relative class number of the p^{m} th cyclotomic field has been expressed as a rational determinant (Maillet's determinant; cf. [1, 8, 10, 11], see also [12, 3]). Moreover, an explicit relative class number formula in terms of quartic power residues modulo p has been given for imaginary cyclic quartic fields of conductor p [9,7]. The aim of the present article is to study a generalization of Maillet's determinant that yields relative class number formulas for arbitrary imaginary abelian fields K of conductor p^{m} (Theorem 1). By specializing these formulas to fields K of degree $[K: \mathbb{Q}]=2 d$ and conductor p, we obtain explicit relative class number formulas in the cases $d=1,2,3,4,5$ (the formula for $d=1$ is well known, of course). Our formulas are used to compute relative class number tables for $d=3,4,5$ and $p \leq 10000$ (Tables 1-3 in the Supplement section; the respective table for $d=2$ can be found in [6]).

1. Generalized Maillet determinants

Let K be an imaginary abelian number field of conductor n. In particular, K is contained in the nth cyclotomic field $\mathbb{Q}\left(\zeta_{n}\right), \zeta_{n}=e^{2 \pi i / n}$. By G_{n} we denote the Galois group

$$
G_{n}=\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right) .
$$

Let $(\mathbb{Z} / n \mathbb{Z})^{\times}$be the prime residue group $\bmod n$. There is a canonical isomorphism

$$
(\mathbb{Z} / n \mathbb{Z})^{\times} \rightarrow G_{n}
$$

which maps the residue class $\bar{k}, k \in \mathbb{Z}$, onto σ_{k}, σ_{k} being defined by $\sigma_{k}\left(\zeta_{n}\right)=$ ζ_{n}^{k}. For this reason we shall frequently identify \bar{k} with σ_{k}, and thus the group $(\mathbb{Z} / n \mathbb{Z})^{\times}$with G_{n}.

Received by the editor August 30, 1991 and, in revised form, November 17, 1992.
1991 Mathematics Subject Classification. Primary 11R29, 11R20, 11-04.

Let $H \subseteq G_{n}$ be the Galois group

$$
H=\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / K\right)=\left\{\sigma \in G_{n} ;\left.\sigma\right|_{K}=\mathrm{id}\right\}
$$

Since K is imaginary, H does not contain complex conjugation $\sigma_{-1}=\overline{-1}$. Therefore, $K^{+}=K \cap \mathbb{R}$ is a proper subfield of K, and $H^{+}=\{\{\overline{-1}\} \cup H\rangle$ is the Galois group $H^{+}=\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / K^{+}\right)$. The group index $\left[H^{+}: H\right.$] equals 2. We write $d=\left[K^{+}: \mathbb{Q}\right]$, which means $[K: \mathbb{Q}]=2 d$. Now let X_{n} be the character group of $G_{n}, X \subseteq X_{n}$ the character group of K (i.e., the character group of $\left.G_{n} / H\right), X^{+}$the character group of K^{+}, and $X^{-}=X \backslash X^{+}$. We fix an arbitrary character ψ in X^{-}. This is the same as saying $\psi(\bar{k})=1$ for each $\bar{k} \in H$, and $\psi(\overline{-1})=-1$.

For a given number $k \in \mathbb{Z}$, let $[k]=[\bar{k}]$ be defined by

$$
k \equiv[k] \bmod n \text { and }[k] \in\{0,1, \ldots, n-1\}
$$

If $(k, n)=1$, we put

$$
E_{k}=\psi(\bar{k}) \sum_{\substack{j=1 \\ \bar{j} \in H}}^{n}(2[k j]-n) .
$$

Proposition 1. With the above notations,

$$
E_{k}=\sum_{\substack{j=1 \\ \bar{j} \in \bar{k} H^{+}}}^{n} \psi(\bar{j})[j] .
$$

In particular, E_{k} depends on the residue class of \bar{k} modulo H^{+}only.
Proof. Since $\psi(\bar{j})=1$ for all elements $\bar{j} \in H$, one obtains

$$
E_{k}=\sum_{\bar{j} \in H} \psi(\overline{k j})(2[k j]-n) .
$$

Now E_{k} can be rewritten as

$$
\begin{aligned}
E_{k} & =\frac{1}{2} \sum_{\bar{j} \in H}(\psi(\overline{k j})(2[k j]-n)+\psi(\overline{-k j})(2[-k j]-n)) \\
& =\frac{1}{2} \sum_{\bar{j} \in \bar{k} H^{+}} \psi(\bar{j})(2[j]-n) \\
& =\sum_{\bar{j} \in \bar{k} H^{+}} \psi(\bar{j})[j]-\frac{n}{2} \psi(\bar{k}) \sum_{\bar{j} \in H^{+}} \psi(\bar{j})
\end{aligned}
$$

However, the last sum is 0 , since $\psi(\bar{j})=1$ for $\bar{j} \in H, \psi(\bar{j})=-1$ for $\bar{j} \in H^{+} \backslash H$, and $|H|=\left|H^{+} \backslash H\right|=d$.

In view of Proposition 1 we may write $E_{k}=E_{r}$, where r is the residue class of \bar{k} modulo H^{+}.

Let $\mathscr{R} \subseteq \mathbb{Z}$ be a system of representatives of G_{n} / H^{+}. In particular, $|\mathscr{R}|=$ d. Suppose, moreover, that \mathscr{R} is ordered in some way. We put

$$
D=\operatorname{det}\left(E_{k j}\right)_{k, j \in \mathscr{R}}=\operatorname{det}\left(E_{r s}\right)_{r, s \in G_{n} / H^{+}},
$$

and

$$
D^{*}=\operatorname{det}\left(E_{r s-1}\right)_{r, s \in G_{n} / H^{+}} .
$$

Finally, let $\delta=\left|\left\{k \in \mathscr{R} ; \bar{k}^{2} \in H^{+}\right\}\right|$. We get
Proposition 2. In the above situation,

$$
D=(-1)^{(d-\delta) / 2} \cdot D^{*}
$$

Proof. Consider the permutation

$$
\rho: G_{n} / H^{+} \rightarrow G_{n} / H^{+}
$$

of G_{n} / H^{+}, defined by $\rho(r)=r^{-1}$. Clearly, $D=\operatorname{sign}(\rho) \cdot D^{*}$. But $\operatorname{sign}(\rho)=$ $(-1)^{\varepsilon}$, with $\varepsilon=\left|\left\{r \in G_{n} / H^{+} ; r \neq r^{-1}\right\}\right| / 2=\left(d-\left|\left\{r \in G_{n} / H^{+} ; r^{2}=1\right\}\right|\right) / 2=$ $(d-\delta) / 2$.

For a prime divisor p of n, let e_{p} (resp. e_{p}^{+}) be the ramification index of p in K (resp. K^{+}). Similarly, g_{p} (resp. g_{p}^{+}) denotes the number of prime divisors of p in K (resp. K^{+}).

Theorem 1. Let the above notations hold. Then $D^{*}=0$ if there is a $p, p \mid n$, with $g_{p}=2 g_{p}^{+}$. Otherwise,

$$
D^{*}=(-2 n)^{d} 2^{\kappa} h^{-} /(Q \cdot w)
$$

with

$$
\begin{aligned}
& \kappa=\sum\left\{g_{p}^{+} ; p \mid n, g_{p}=g_{p}^{+}, e_{p}=e_{p}^{+}\right\} \\
& h^{-}=\text {relative class number of } K \\
& Q=\text { unit index of } K \\
& w=\text { number of roots of unity in } K \text { (for notation, cf. [5]). }
\end{aligned}
$$

Proof. By its definition, D^{*} is a group determinant belonging to the abelian group G_{n} / H^{+}, which means (cf. [5, p. 23])

$$
D^{*}=\prod_{\chi \in X^{+}}\left(\sum_{r \in G_{n} / H^{+}} \chi(r) \cdot E_{r}\right)
$$

It is easy to see that

$$
\sum_{r \in G_{n} / H^{+}} \chi(r) \cdot E_{r}=\sum_{\substack{k=1 \\(k, n)=1}}^{n} \chi \psi(\bar{k}) \cdot k
$$

whence

$$
D^{*}=\prod_{\chi \in X^{-}}\left(\sum_{\substack{k=1 \\(k, n)=1}}^{n} \chi(\bar{k}) \cdot k\right)
$$

Now let f_{χ} denote the conductor of χ, and χ_{f} the primitive character of $\left(\mathbb{Z} / f_{\chi} \mathbb{Z}\right)^{\times}$that belongs to χ. A reduction formula of Hasse (cf. [5, p. 18]) says

$$
\sum_{\substack{k=1 \\(k, n)=1}}^{n} \chi(\bar{k}) \cdot k=n \cdot \prod_{p \mid n}\left(1-\chi_{f}(p)\right) \cdot B_{\chi}
$$

where B_{χ} is the generalized Bernoulli number

$$
B_{\chi}=\sum_{k=1}^{f_{\chi}} \chi_{f}(\bar{k}) \cdot k / f_{\chi}
$$

The product $\prod_{\chi \in X^{-}}\left(1-\chi_{f}(p)\right)$ can be evaluated in a well-known way (cf., e.g., [2]). We obtain

$$
\prod_{\chi \in \mathrm{X}^{-}}\left(1-\chi_{f}(p)\right)= \begin{cases}0 & \text { if } g_{p}=2 g_{p}^{+} \\ 1 & \text { if } e_{p}=2 e_{p}^{+} \\ 2 & \text { if } g_{p}=g_{p}^{+}, e_{p}=e_{p}^{+}\end{cases}
$$

Finally,

$$
\prod_{\chi \in \mathrm{X}^{-}} B_{\chi}=(-2)^{d} \cdot h^{-} /(Q \cdot w)
$$

(cf. [5, p. 12]). On putting these results together, one gets the theorem.
Let us now consider the special case $n=p^{m}, p$ an odd prime. Then K is a cyclic extension of \mathbb{Q} with $[K: \mathbb{Q}]=2 d$. Since $e_{p}=2 e_{p}^{+}$, the number κ is 0 . According to [5, p. 68], the unit index Q equals 1 . The number w is given by the following
Proposition 3. With the above conventions,

$$
w= \begin{cases}2 \cdot p^{m} & \text { if } K=\mathbb{Q}\left(\zeta_{n}\right) \\ 2 & \text { otherwise }\end{cases}
$$

Proof. Assume that K contains a root of unity different from ± 1. Then K contains a root of unity of p-power order. Therefore, $\zeta_{p} \in K$. But then $\left[\mathbb{Q}\left(\zeta_{n}\right): K\right]=p^{k}$ for some $k, 0 \leq k \leq m-1$. Since $\mathbb{Q}\left(\zeta_{n}\right)$ is cyclic over \mathbb{Q}, there is only one subfield K of $\mathbb{Q}\left(\zeta_{n}\right)$ with this property, viz., $K=\mathbb{Q}\left(\zeta_{p^{m-k}}\right)$. However, $n=p^{m}$ is the conductor of K; hence $k=0$.

On collecting the above observations, we obtain the
Corollary to Theorem 1. Let $p \geq 3$ be prime, $n=p^{m}, m \geq 1$, and K be an imaginary abelian field of conductor n and degree $2 d=[K: \mathbb{Q}]$. Then

$$
D^{*}= \begin{cases}(-1)^{d}(2 n)^{d-1} \cdot h^{-} & \text {if } K=\mathbb{Q}\left(\zeta_{n}\right) \\ (-n)^{d} \cdot 2^{d-1} \cdot h^{-} & \text {otherwise }\end{cases}
$$

2. The case of a prime conductor

Let, in particular, $n=p \geq 3$ be prime, which implies that $2 d \mid(p-1)$. Then

$$
H=G_{p}^{2 d}=\left\{\bar{k}^{2 d} ; \bar{k} \in G_{p}\right\}
$$

Since $\overline{-1}$ is not in H, we get $(-1)^{(p-1) /(2 d)} \equiv-1 \bmod p$, and $p \equiv 1+$ $2 d \bmod 4 d$. If, conversely, $p \equiv 1+2 d \bmod 4 d$, there is a uniquely determined subfield K of $\mathbb{Q}\left(\zeta_{p}\right)$ with $[K: \mathbb{Q}]=2 d$, and K is imaginary. We now choose a number $g \in \mathbb{Z} \backslash p \mathbb{Z}$ such that $\mathscr{R}=\left\{1, g, g^{2}, \ldots, g^{d-1}\right\}$ is a system of representatives for G_{p} / H^{+}. This is the same as saying that

$$
\begin{equation*}
g^{k(p-1) / d} \not \equiv 1 \bmod p \tag{*}
\end{equation*}
$$

for each $k \in\{1, \ldots, d-1\}$. We define

$$
\begin{equation*}
F_{k}=\sum_{j=1}^{p-1}\left(2\left[g^{k} j^{2 d}\right]-p\right), \quad k \in \mathbb{Z} \tag{**}
\end{equation*}
$$

Then $\psi\left(\bar{g}^{k}\right) \cdot F_{k}=2 d \cdot E_{g^{k}}$. By Proposition 2 and the corollary of Theorem 1,

$$
\begin{equation*}
\operatorname{det}\left(\psi\left(\bar{g}^{j+k}\right) F_{j+k}\right)_{j, k=0, \ldots, d-1}=(2 d)^{d} \cdot D=c \cdot h^{-} \tag{***}
\end{equation*}
$$

with

$$
c= \begin{cases}(-1)^{(3 d-1) / 2} \cdot 2^{2 d-1} \cdot p^{d-1} \cdot d^{d} & \text { if } d=(p-1) / 2 \\ & p \equiv 3 \bmod 4 \\ (-1)^{(3 d-2) / 2} \cdot 2^{2 d-1} \cdot p^{d-1} \cdot d^{d} & \text { if } d=(p-1) / 2 \\ & p \equiv 1 \bmod 4 \\ (-1)^{(3 d-1) / 2} \cdot 2^{2 d-1} \cdot(p d)^{d} & \text { if } d<(p-1) / 2 \\ & d \text { odd } \\ (-1)^{(3 d-2) / 2} \cdot 2^{2 d-1} \cdot(p d)^{d} & \text { if } d<(p-1) / 2 \\ & d \text { even }\end{cases}
$$

Examples. For small numbers d it is easy to write down the determinant in $(* * *)$ term by term. We do so for $d=1, \ldots, 5$.

1. Let $d=1$, i.e., $p \equiv 3 \bmod 4$, and $p>3$. In this case $(* * *)$ means

$$
F_{0}=\sum_{j=1}^{p-1}\left(2\left[j^{2}\right]-p\right)=-2 p \cdot h^{-} .
$$

This is well known (cf. [4, p. 387]).
2. Let $d=2$, i.e., $p \equiv 5 \bmod 8$, and $p>5$. Because of $\left(\frac{2}{p}\right) \equiv 2^{(p-1) / 2} \equiv$ $-1 \bmod p$, the number $g=2$ has property $(*)$, and the character ψ can be defined by

$$
\psi(\overline{2})=i, \quad \psi(\bar{k})=1
$$

for all $k \in H=G_{p}^{4}$. With F_{k} defined as in (**), formula ($* * *$) reads as

$$
\operatorname{det}\left(\begin{array}{cc}
F_{0} & i F_{1} \\
i F_{1} & F_{0}
\end{array}\right)=F_{0}^{2}+F_{1}^{2}=32 \cdot p^{2} \cdot h^{-}
$$

3. Let $d=3$, i.e., $p \equiv 7 \bmod 12$, and $p>7$. Choose a number $g^{\prime} \in$ $\mathbb{Z} \backslash p \mathbb{Z}$ such that $g^{\prime(p-1) / 3} \not \equiv 1 \bmod p$. Then put $g=g^{\prime 2}$. Moreover, since $p \equiv 3 \bmod 4$, the Legendre symbol $\psi=(\bar{p})$ is an odd character with $H=G_{p}^{6}$ contained in $\operatorname{Ker} \psi$. However, $\psi\left(\bar{g}^{k}\right)=1, k=0,1,2$, and, with F_{k} as in $(* *)$, formula $(* * *)$ takes the form

$$
3 \cdot F_{0} \cdot F_{1} \cdot F_{2}-\left(F_{0}^{3}+F_{1}^{3}+F_{2}^{3}\right)=864 \cdot p^{3} \cdot h^{-}
$$

4. Let $d=4$, i.e., $p \equiv 9 \bmod 16$, and $p>9$. Choose $g \in \mathbb{Z} \backslash p Z$ such that $\left(\frac{g}{p}\right) \equiv g^{(p-1) / 2} \equiv-1 \bmod p$. Then g has property $(*)$, and ψ can be defined by $\psi(\bar{g})=\zeta_{8}=e^{\pi i / 4}, \psi(\bar{k})=1$ for all $\bar{k} \in H=G_{p}^{8}$. With F_{k} as in (**), our
formula $(* * *)$ reads as

$$
\begin{aligned}
&-\left(F_{0}^{4}+F_{1}^{4}+F_{2}^{4}+F_{3}^{4}\right)-2\left(F_{0}^{2} F_{2}^{2}+F_{1}^{2} F_{3}^{2}\right) \\
&-4\left(F_{0}^{2} F_{1} F_{3}-F_{1}^{2} F_{0} F_{2}-F_{2}^{2} F_{1} F_{3}+F_{3}^{2} F_{0} F_{2}\right)=-32768 \cdot p^{4} \cdot h^{-}
\end{aligned}
$$

5. Finally, let $d=5$, i.e., $p \equiv 11 \bmod 20$, and put $p>11$. Choose a number $g^{\prime} \in \mathbb{Z} \backslash p \mathbb{Z}$ such that $g^{\prime(p-1) / 5} \not \equiv 1 \bmod p$. Then $g=g^{\prime 2}$ has property $(*)$. Again, the Legendre symbol $\psi=(\bar{p})$ is an odd character of G_{p}, with $H \subseteq \operatorname{Ker} \psi$ and $\psi(\bar{g})=1$. We obtain

$$
\begin{aligned}
& F_{0}^{5}+F_{1}^{5}+F_{2}^{5}+F_{3}^{5}+F_{4}^{5} \\
& \quad-5\left\{F_{0}^{3}\left(F_{1} F_{4}+F_{2} F_{3}\right)+F_{1}^{3}\left(F_{0} F_{2}+F_{3} F_{4}\right)+F_{2}^{3}\left(F_{0} F_{4}+F_{1} F_{3}\right)\right. \\
& \left.\quad+F_{3}^{3}\left(F_{0} F_{1}+F_{2} F_{4}\right)+F_{4}^{3}\left(F_{0} F_{3}+F_{1} F_{2}\right)\right\} \\
& +5\left\{F_{0}\left(F_{1}^{2} F_{4}^{2}+F_{2}^{2} F_{3}^{2}\right)+F_{1}\left(F_{0}^{2} F_{2}^{2}+F_{3}^{2} F_{4}^{2}\right)\right. \\
& \\
& \left.\quad+F_{2}\left(F_{0}^{2} F_{4}^{2}+F_{1}^{2} F_{3}^{2}\right)+F_{3}\left(F_{0}^{2} F_{1}^{2}+F_{2}^{2} F_{4}^{2}\right)+F_{4}\left(F_{0}^{2} F_{3}^{2}+F_{1}^{2} F_{2}^{2}\right)\right\} \\
& \\
& \\
& \quad-5 \cdot F_{0} F_{1} F_{2} F_{3} F_{4}=-1600000 \cdot p^{5} \cdot h^{-}
\end{aligned}
$$

Remarks. 1. Of course it is possible to give analogous relative class number formulas for $d \geq 6$, too. In the case $d=6$, however, the determinant $\operatorname{det}\left(\psi(\bar{g})^{j+k} F_{j+k}\right)$ consists of 68 monomials in F_{0}, \ldots, F_{5}. Therefore, the formula is too complicated to be written in full.
2. Let $d=2^{q} \cdot d^{\prime}, d^{\prime}$ odd. Then X contains a character ψ of order 2^{q+1}. Obviously, $\psi(\overline{-1})=\overline{-1}$ and $\psi(\bar{k})=1$ for all $\bar{k} \in H=G_{p}^{2 d}$. Thus, ψ has the required properties, and we may say that there is always an appropriate character ψ of G_{p} of 2-power order.

3. Tables

We have used the formulas of Examples $1, \ldots, 5$ to compute the relative class numbers $h_{2 d}^{-}$of imaginary subfields $K \subseteq \mathbb{Q}\left(\zeta_{p}\right)$ with $[K: \mathbb{Q}]=2 d, d \in$ $\{2,3,4,5\}$ and $2 d+1<p<500000$. In the Supplement we display the result for $d=3,4,5$ and $p<10000$ (Tables 1, 2, 3). The respective table for $[K: \mathbb{Q}]=4$ can be found in [6].

Bibliography

1. L. Carlitz and F. R. Olson, Maillet's determinant, Proc. Amer. Math. Soc. 6 (1955), 265269.
2. K. Girstmair, An index formula for the relative class number of an abelian number field, J. Number Theory 32 (1989), 100-110.
3. __, A recursion formula for the relative class number of the p^{n}-th cyclotomic field, Abh. Math. Sem. Univ. Hamburg 61 (1991), 131-138.
4. H. Hasse, Vorlesungen über Zahlentheorie, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1950.
5. ___ Über die Klassenzahl abelscher Zahlkörper, Akademie-Verlag, Berlin, 1952.
6. R. Hudson, Class numbers of imaginary cyclic quartic fields and related quaternary systems, Pacific J. Math. 115 (1984), 129-142.
7. R. Hudson and K. Williams, A class number formula for certain quartic fields, Carleton Math. Series 174 (1981).
8. J. Kühnová, Maillet's determinant $D_{p^{n+1}}$, Archivum Math. 15 (1979), 209-212.
9. B. Setzer, The determination of all imaginary, quartic, abelian number fields with class number 1, Math. Comp. 35 (1980), 1383-1386.
10. L. Skula, Another proof of Iwasawa's class number formula, Acta Arith. 39 (1981), 1-6.
11. K. Tateyama, Maillet's determinant, Sci. Papers College Gen. Ed. Tokyo 32 (1982), 97-100.
12. K. Wang, On Maillet determinant, J. Number Theory 18 (1984), 306-312.

Institut für Mathematik, Universität Innsbruck, Technikerstrasse 25/7, A-6020 Innsbruck, AUSTRIA

E-mail address: kurt.girstmair@uibk.ac.at

